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Outlier Detection in Big Data

INTRODUCTION

This chapter will examine the issues posed by Big 
Data for the task of outlier detection. An outlier 
(Hodge, 2011) (often called an anomaly (Chan-
dola, Banerjee, & Kumar, 2009) in the literature) 
is a particular data point or, in some instances, a 
small set of data points that is inconsistent with the 
rest of the data population as shown in Figure 1.

“Big Data” refers to large, dynamic collec-
tions of data. Data sources are generating more 
and more data while increasing numbers of 
decentralized data sources are added everyday 
as interconnection and data exchange become 
easier. Typical features of Big Data are: data 
comprising trillions of records where the data is 
loosely structured; delivered from heterogeneous 
data sources in heterogeneous data formats; often 
streamed in real-time and at high volume; and, 
often distributed either across local computer 
clusters or across separate geographically distinct 
sites driven by Big Data mechanisms such as cloud 
computing and on-line services. Such data may 

be problematic for traditional outlier tools and 
techniques to process. This chapter studies when 
and where outlier detection is used and examines 
the problems posed and the solutions produced for 
outlier detection on Big Data. It then analyzes the 
future directions for outlier detection in Big Data.

BACKGROUND

Outlier detection or anomaly detection has been 
used for centuries to detect and remove anoma-
lous data points from data. The original methods 
were arbitrary but today, principled and system-
atic techniques are used. These include (Hodge, 
2011): distance-based; density-based; statistical 
(including regression); machine learning (includ-
ing decision trees, expert systems and clustering); 
information theory; spectral decomposition; neu-
ral networks; support vector machines (SVMs); 
and, natural computation derived from artificial 
immune systems. Outlier detection distinguishes 
outlier data from normal data using either: abnor-
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Figure 1. The graph on the left includes three outliers (A-C) and a small cluster of outliers. The graph 
on the right represents time-series data with a single point outlier (A) and an outlying section (B).
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mality detection which compares new data to a 
model of normality (or a model of abnormality); 
or, outlier classification which classifies new data 
as either normal or abnormal. Outlier detection 
can also use time-series or sequence analysis to 
detect changes in temporal patterns.

In the business domain, outlier detection can 
rapidly identify an intruder inside a business’s 
computer network with malicious intentions 
(Vieira, Schulter, Westphall, & Westphall, 2010). 
DARPA (http://www.darpa.mil) is investing $35 
million in a program focusing on insider threat 
detection in massive datasets as anomaly detection 
produces important information for a wide variety 
of application domains. Much outlier detection 
research focuses on detecting fraud, particularly 
financial fraud (Phua, Lee, Smith-Miles, & Gayler, 
2010). Fraud detection automates all or part of 
the application process and the usage or activ-
ity monitoring. In general business databases, 
outliers may indicate fraudulent cases or they 
may just denote an error. Outlier detection can 
pinpoint these data so they can be corrected or 
removed and database consistency and integrity 
can be ensured. Equity or commodity traders can 
use outlier detection to monitor individual shares, 
commodities or markets to detect buying or sell-
ing opportunities (Fang, Luo, Xu, & Fei, 2009). 
Businesses can identify new opportunities by using 
outlier detection to pinpoint unusual or distinctive 
patents using text-based outlier detection (Yoon 
& Kim, 2012). Outlier detection can even be used 
to provide an early warning to detect financial 
institutions that display abnormal behavior and 
may be more likely to fail (Kimmel, Booth, & 
Booth, 2010). Activity monitoring of time-series 
or sequence data can be used to constantly moni-
tor processes for anomalies: detecting faults in 
machinery (Schlechtingen & Santos, 2011), de-
tecting faults on factory production lines (Merdan, 
Vallee, Lepuschitz, & Zoitl, 2011) or analyzing 
telecommunication networks (Eiweck, Pattinson, 
Behringer, & Seewald, 2010). Such fault detection 
can help to minimize downtime, prevent failures 
and save businesses money and time. Businesses 

rely on the transportation systems to transport their 
products or to receive raw materials. Employees 
rely on the transport network to get to and from 
work and to meetings. Hence, an efficient and 
reliable transportation system is vital for business 
productivity. Traffic incidents, vehicle defects or 
infrastructure defects can be detected by process-
ing the sensor data and recognizing outliers.

FINDING OUTLIERS IN BIG DATA

Issues, Controversies, Problems

As the complexity, variety, speed and volume of 
data increases then management and process-
ing of these data becomes ever more complex. 
Additionally, many businesses require real-time 
outlier detection on such data. Hence, outlier 
detectors need to be carefully designed to cope 
with the complexity, variety, speed and volume 
required. The volume of outliers detected in Big 
Data may well overwhelm many system admin-
istrators and software management tools used for 
diagnosis and analysis. Hence, outlier detectors 
need to be accurate and minimize false positives 
or false negatives due to the cost of analyzing each 
anomaly. The granularity of Big Data needs to be 
sufficiently high to allow the individual points to 
be differentiated for outlier analysis. However, 
Big Data are often very high dimensional. This 
high dimensionality causes the data points to be-
come sparse so existing distance measures such 
as Euclidean distance and the standard concept 
of nearest neighbors become less applicable (Er-
toz, Steinbach, & Kumar, 2003). Additional data 
dimensions can also introduce noise and make 
outliers more difficult to detect. Outlier detec-
tion, therefore, needs to handle high dimensional 
and sparse data. If this data is distributed, there 
is also the issue of data synchronization when 
aggregating the data.

While Big Data poses many challenges for 
outlier detection applications, it also provides 
opportunities. Big Data will contain a broader 
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range of outlier examples and will allow systems 
to uncover new types of outlier through increased 
data richness. Outlier detection systems need to 
find rare patterns (outliers) and can improve their 
robustness by exploiting the richness of the data as 
models are only as good as the data learned. Many 
interesting data patterns and data relationships 
are not stored in a single data collection but are 
spread across heterogeneous data sources (Das, 
Srivastava, Matthews, & Oza, 2010). Businesses 
must develop new techniques for analysis and vi-
sualization of these distributed data sources which 
will allow new patterns and relationships to be 
discovered that were not previously available. This 
will close the gap between what information the 
data holds and what we can extract. There is also 
potential to incorporate new data sources. Social 
network analysis is being introduced to uncover 
new outliers (Šubelj, Furlan, & Bajec, 2011) or to 
provide additional evidence (Phua, Smith-Miles, 
Lee, & Gayler, 2012) for outlier validation.

Solutions and Recommendations

Many businesses require real-time decision mak-
ing including real-time outlier detection. This 
requires systems that can process vast volumes 
of data, often heterogeneous streaming data and 
provide instantaneous decisions. There are vari-
ous solutions for outlier detection to allow large 
volumes of data to be analyzed. One technique 
is to develop an algorithm specifically for large 
datasets. Koufakou and Georgiopoulos (2010) 
introduced a (distributed) two-step technique 
tailored to processing large and heterogeneous 
datasets. They use the categorical attributes 
to calculate an outlier score and partition the 
data and then use these partitions to analyze the 
continuous attributes and identify the outliers. 
Another approach is to keep the outlier detector 
simple. Eiweck et al. (2010) used simple statisti-
cal outlier detectors based on inter-quartile range 
and standard deviations to allow near real-time 
analysis of telecoms networks through analyzing 
the data using different time frames. The simplic-

ity allows large data to be processed in near-real 
time. Bohm. Haegler, Müller, and Plant, (2009) 
aimed to be parameter free precluding the need to 
tune parameters and allowing fast training. They 
defined the data by a mixture model of distribu-
tions and a point is an outlier if it does not fit in 
any of the distribution functions.

Processing can also be speeded by only storing 
the required granularity of information. Busi-
nesses can store all of the raw data, samples of 
the data, summaries of the data or a combination, 
for example, storing a data summary locally for 
fast access and maintaining the raw data in large 
data warehouse to be accessed when necessary. 
Dash and Ng (2010) used sampling to analyze 
transactional data (supermarket sales) for outliers. 
The authors selected a representative sample from 
the entire dataset by ensuring that the distance 
between the sample and the dataset is below a 
threshold. This sample models normality so new 
transactions can be classified as outliers or normal 
by comparing them against the sample. However 
data sampling has to be performed carefully as 
spikes and outliers may be discarded during sam-
pling as they occur infrequently and modelling 
normality requires clean data to ensure that no 
outliers are contaminating the training sample. 
Omniture (http://www.omniture.com/en/) and 
other commercial tools use data summarization. 
Storing a data summary allows a business to only 
save selected features of the data; vastly reducing 
the storage requirement and speeding processing. 
Also, some outliers can only be found in high 
dimensional data using feature subsets which 
represent smaller views of the data (Koufakou & 
Georgiopoulos, 2010). Again, summarization has 
to be performed carefully to ensure that outliers 
are not removed during feature selection.

Big Data warehouses store vast timelines of 
data for analysis. These data are often distributed 
across compute clusters or geographical sites. 
Data warehouse infrastructures have two main 
components: software to distribute and store the 
data for instance Hadoop Distributed File System 
(http://hadoop.apache.org/) and software to re-
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trieve and perform computations on the data from 
these distributed machines for instance MapRe-
duce. To process large data, authors have taken 
existing outlier detection algorithms such as the 
binary KD-Tree (He, Ma, Wang, Zhuang, & Shi, 
2011) or graphs representing social networks or 
Web page links (Kang, Chau, & Faloutsos, 2011) 
and parallelized them for distributed processing 
using Hadoop. Distributed processing can be lo-
cal or global.

Outliers can be identified locally and the lo-
cal outlier scores aggregated to produce a global 
outlier score at a coordinating node or the local 
data can be aggregated at a coordinating node and 
analyzed for outliers globally. The communica-
tion overhead is an important consideration for 
Big Data. Local outlier detection is likely to have 
the lowest overhead as only outlier scores need to 
be aggregated whereas a global approach needs 
to combine all data. However, a global approach 
can provide a system-wide view whereas local 
processing limits the overview. Anguilli, Basta, 
Lodi, and Sartori (in press) adapted a distance-
based approach to detect outliers locally in very 
large datasets using a small subset of the dataset, 
computing distances on local nodes and iteratively 

merging the results at a coordinating node. They 
developed a ”lazy” version, which only sends 
distances when they are needed and this showed 
the most promising performance. Gao (2011) pro-
posed to detect outliers globally by aggregating all 
different data sources into a matrix representation 
which preserves the individual object relation-
ships. Computing cosine distance between the 
components of the eigenvectors of the matrix using 
spectral techniques can identify the key features of 
the combined matrix and pinpoint outliers. Das, 
Bhaduri, and Votava (2011) performed both local 
and global analyses by using a one-class SVM to 
identify outliers locally and collecting these local 
outliers at one coordinating node. The coordinat-
ing node also uses data samples from the local 
nodes to build a global model. All local outliers 
are tested against this global model.

When analyzing Big Data for outliers, the 
high number of outliers detected may overwhelm 
the system and some of these outliers detected 
may be false alarms. One option is to rank the 
outliers to assign a priority so the outliers can be 
analyzed in priority order as resources become 
available. Viswanathan et al. (2012) proposed a 
lightweight method for outlier ranking capable 
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Figure 2. The diagram on the left demonstrates local outlier detection where the outliers are determined 
locally and merged at the sink node. In contrast, global outlier detection merges the data at the sink node 
prior to outlier detection as shown on the right.
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of operating in modern data centers by calculat-
ing the outlier probability using simple statistics. 
Another approach is to validate anomalies once 
they have been detected to remove false positives. 
Sithirasenan and Muthukkumarasamy (2011) 
analyzed network intrusion data from different 
viewpoints and calculated an outlier score by 
comparing each outlier found with the data of its 
nearest neighbors using entropy.

Many authors have examined hybrid sys-
tems. As computer networks become ever more 
complex with grid or cloud systems, the task of 
network intrusion detection becomes ever more 
complicated. It needs to aggregate and analyze 
the data across multiple nodes and layers; process 
ever increasing volumes of data and detect ever 
more sophisticated attacks including coordinated 
and distributed attacks. Roschke, Cheng, and 
Meinel (2009) and Vieira et al. (2010) among 
others have developed hybrid modular intrusion 
detection systems to identify malicious behavior. 
Modules include a pattern-based anomaly detec-
tor to learn normal behavior and recognize novel 
(outlier) behavior; a rule-based signature detec-
tor which can be sophisticated but cannot detect 
novel attacks and frequency detectors to check for 
repeated behavior in a short space of time. Enter-
prise software running on computer networks is 
also becoming more complex spanning multiple 
computers, operating systems, languages and 
sites yet businesses need to ensure the availability 
and performance of enterprise software on their 
networks. Cherkasova, Ozonat, Mi, Symons, and 
Smirni (2009) proposed a hybrid system compris-
ing two techniques: a regression-based model that 
learns the application’s resource usage pattern and 
detects changes; and a performance signature that 
models the application’s runtime behavior and 
identifies the causes of changes. Schlechtingen and 
Santos (2011) recommended hybrid techniques 
for different aspects of wind turbine monitoring. 
For example, they used regression to monitor 
simple components and neural networks for more 
complex monitoring tasks. Merdan et al. (2011) 
designed a system for factory process monitoring 
using communicating multi-agent systems. The 

agents analyze sensor data for anomalies locally 
and then communicate to generate a global view.

The financial sector has been proactive in 
using Big Data and business analytics for a wide 
range of tasks including fraud detection (Phua et 
al., 2010) and transaction processing (Dash & Ng, 
2012). Recent research for financial fraud detec-
tion has examined using multi-layered approaches 
and harvesting data from social networks. Phua 
et al. (2012) developed a multi-layered system to 
identify anomalous credit applications in real-
time. Credit application fraud frequently involves 
identity theft where the applicant purports to be 
someone else so their technique used real social 
relationships to generate a suspicion score. It 
also identified duplicate credit applications and 
increases the suspicion score. Šubelj et al. (2011) 
also analyzed social networks to find networks of 
collaborating fraudsters. They used an expert sys-
tem to analyze the network across multiple layers. 
Konijn and Kowalczyk (2011) have investigated a 
hierarchical approach for detecting health insur-
ance fraud which uses standard distance-based 
and density-based techniques to score outliers. 
It then aggregates these scores with a range of 
statistics calculated over different sections of the 
data to identify outliers in entities that are higher 
in the hierarchy. Other insurance fraud research 
has used survival analysis which analyses the time 
until a certain event and determines the probability 
that an individual will survive until a specified 
time. The individual could be an insurance policy 
owner and the policy survives while no fraudu-
lent claims are made. Gepp, Kumar, Wilson, and 
Bhattacharya (2012) state that survival analysis is 
relatively new to business applications and will be 
assisted by Big Data which can provide historical 
timelines of data.

The transportation domain has been similarly 
proactive in incorporating Big Data and analyzing 
global views using distributed processing tech-
niques. Accelerometer and GPS readings from 
mobile phones can act as probes to determine 
up-to-date road surface conditions and provide in-
formation to travelers and maintenance companies 
(Pertunnen et al., 2011). Road surface problems 
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manifest as anomalous patterns in the data. Other 
authors monitor distributed sensor data. Etienne, 
Devogele, and Bouju (2010) detected maritime 
traffic anomalies through distributed sensor 
monitoring; finding unusual trajectories of vessels 
using spatio-temporal pattern analysis of the sensor 
data. Das et al. (2010) analyzed sensor data from 
aircraft fleets using an adapted one-class multi-
kernel SVM where different feature subsets train 
the different kernels. These methods show prom-
ise but there are still outstanding issues to allow 
real-time monitoring in these big transportation 
datasets including: distinguishing the individual 
objects in dense traffic; distinguishing the source 
of mobile phone signals, for example, pedestrians 
versus vehicles; and, having sufficiently accurate 
GPS locations to pinpoint which road the signal 
originates from where the road network is dense. 
Das et al. (2010) note that analyzing data across 
vehicle fleets is challenging as the data is large, 
complex, often heterogeneous and requires a 
system-level analysis.

FUTURE RESEARCH DIRECTIONS

While computational capability has increased 
massively in recent years, gaps still exist espe-
cially in capacity and speed for processing Big 
Data. However, High Performance Computing 
should progress to fill many of the gaps. Murphy 
(2011) pinpoints cloud-based data analytics as 
a rich area of future research and development 
with anomaly detection and other performance 
monitoring tools available as “as-a-service” tools. 
Such systems can use the large volumes of data 
for data mining and identify new patterns and 
trends. Thus, Big Data will produce a shift in the 
analysis from hypothesis-driven discoveries to 
data-driven discovery of patterns or anomalies 
in the data (Sanfilippo, Wolf, O’Connell, Carey, 
& Longstaff, 2012).

As the volume and richness of data expands 
then more outliers will be found. It will not be 
sufficient to just detect outliers; systems will 

need to provide precise and systematic explana-
tions about the outliers to guide system analysts. 
Current explanations are often cumbersome 
and the relationships obtained are too complex 
to understand. As the number of anomalies de-
tected increases then anomalies will also need 
to be prioritized and scheduled for investigation 
(Sanfilippo et al., 2012). Machine faults, hack 
attacks or traffic incident are critical anomalies 
that require immediate detection and investiga-
tion. Other anomalies are more strategic and can 
be scheduled for less busy processing periods. 
Additionally, detected anomalies can be screened 
to remove false positives and reduce the number 
of anomaly investigations. Outlier detection will 
also need to consider the cost of misclassification. 
False negatives are usually more costly (such as 
missing instances of fraud or the precursors to an 
industrial process failure) than false positive errors 
which just waste the analyst’s time investigating 
false leads.

Existing outlier algorithms can be adapted 
for Big Data or new techniques considered. A 
potential new technique is Deep Learning (Bengio, 
2009) which generates data models comprising 
multiple levels of non-linear operations and is 
well suited to the complexity challenges of Big 
Data. There is also a move to integrate different 
outlier algorithms to analyze Big Data. Hybrid 
techniques should give better performance than 
the individual algorithms by overcoming their 
individual limitations and exploiting their differ-
ent strengths. The use of hybrid techniques will 
expand as the size and range of the data and the 
variety of outliers expands.

CONCLUSION

Massive and complex data sources appear at first 
glance to be part of the challenge for data min-
ing tasks such as outlier detection but they also 
hold many opportunities. New outliers can be 
uncovered, vast timelines of data are available 
for analysis and the data models learned will be 
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increasingly rich as the data expands. This will 
allow businesses to learn more about market 
trends, economic factors, competitors and cus-
tomers. Existing outlier detection methods need 
to be adapted or new methods devised to process 
the complexity, volume, speed and variety of Big 
Data. Also, how the data is represented needs to be 
carefully considered including using data samples 
and feature subsets. Big Data is often distributed 
and streamed so outlier detection needs to be able 
to process distributed and streaming data sources. 
Hybrid outlier detectors are often used for Big Data 
to exploit the power of the individual methods. 
The sheer volume of outliers detected in Big Data 
will necessitate screening and/or prioritizing so 
outliers can be investigated systematically and 
systematic explanations provided regarding why 
a data point is an outlier.

The future is likely to see outlier detection 
available on high performance computers as 
software-as-a-service applications.

Outlier detection on Big Data will uncover 
previously unseen outliers, fill in gaps in outlier 
knowledge, provide new insights and identify new 
data relationships.
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KEY TERMS AND DEFINITIONS

Anomaly Detection: The task of finding 
anomalies in a business’s data. Some authors 
use “anomaly detection” to specifically refer to 
network intrusion detection.

Anomaly: Datum that deviates from the norm 
(often used interchangeably with “outlier”).

Big Data: Large, dynamic and unstructured 
collections of data often distributed and streamed.

Business Analytics: The analysis of a busi-
ness’s data to gain insight into the business.

Data Mining: The process of analyzing data 
from different perspectives to predict future be-
havior and trends.

Distributed: Data storage and processing that 
is performed in different locations connected by 
transmission links.

Fault Detection: The task of finding failures 
in hardware or software.

Outlier Detection: The task of finding outliers 
in a business’s data. It is considered a fundamental 
task in data mining.

Outlier: Datum that deviates from the norm.
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